Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells
نویسندگان
چکیده
We report the development of complete structural AlGaN-based deep-ultraviolet light-emitting diodes with an aluminum thin layer for increasing light extraction efficiency. A 217% enhancement in peak photoluminescence intensity at 294 nm is observed. Cathodoluminescence measurement demonstrates that the internal quantum efficiency of the deep-UV LEDs coated with Al layer is not enhanced. The emission enhancement of deep-UV LEDs is attributed to the higher LEE by the surface plasmon-transverse magnetic wave coupling. When the proportion of the TM wave to the Al layer increases with the Al content in the Al(x)Ga(1-x)N multiple quantum wells, i.e., the band edge emission energy, the enhancement ratio of the Al-coated deep-UV LEDs increases.
منابع مشابه
Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells.
The optical polarization properties of staggered AlGaN-AlGaN/AlN quantum wells (QWs) are investigated using the theoretical model based on the k·p method. The numerical results show that the energy level order and coupling relation of the valence subband structure change in the staggered QWs and the trend is beneficial to TE polarized transition compared to that of conventional AlGaN/AlN QWs. A...
متن کاملGrowth and optical properties of III-nitride semiconductors for deep UV (230–350 nm) light-emitting diodes (LEDs) and laser diodes (LDs)
For the first time, we demonstrated intense ultraviolet (UV) emission at 230–350 nm from III-nitride compound semiconductors grown by metalorganic vapor phase epitaxy (MOVPE). First, we obtained 230 nm-band intense UV emission from AlN/AlxGa1−xN quantum wells (QWs) at 77K. The emission efficiency of AlGaN-based QWs was as high as that of blue light-emitting diodes (LEDs) at low temperature, how...
متن کاملDegradation mechanism beyond device self-heating in high power light-emitting diodes
Related Articles Temperature-dependence of the internal efficiency droop in GaN-based diodes Appl. Phys. Lett. 99, 181127 (2011) Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes Appl. Phys. Lett. 99, 181116 (2011) Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electronblocking layer J. Ap...
متن کاملSurface plasmon enhanced super bright InGaN light emitter
We use surface plasmons to increase the light emission efficiency from InGaN/GaN quantum wells by covering these with thin metallic films. Large luminescence enhancements were measured when silver or aluminum layers are deposited 10 nm above an InGaN light emitting layer, whereas no such enhancements are obtained from gold coated samples. The internal quantum efficiencies of quantum wells befor...
متن کاملTop- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons
We report localised-surface-plasmon (LSP) enhanced deep-ultraviolet light-emitting diodes (deep-UV LEDs) using Al nanoparticles for LSP coupling. Polygonal Al nanoparticles were fabricated on the top surfaces of the deep-UV LEDs using the oblique-angle deposition method. Both the top- and bottom-emission electroluminescence of deep-UV LEDs with 279 nm multiple-quantum-well emissions can be effe...
متن کامل